
AD-A269 609 "

Organizing Plan Libraries in
Subsumption Hierarchies: Specificity

Based Plan Selection
Vibhu 0. Mittal, Cecile L. Paris,
Ramesh Patil and Bill Swartout

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California 90292

December 1991
ISI/RR-93-305

DTIC
SELECTEn

• .P -.P2 1993 fl

IT

lthi docý) 1ý.~ f Q~PPoved
fox -uh M~ ie t

.93-21885
)-I On Y

FORAIAPPROVEDREPORT DOCUMENTATION PAGE oA#B AO. ,70o1

Public rp0 bwden for this caleclton of btonnation Is etknmated to awwae I how par respom.., w mg ft. thu. for re'vilw6V WainuUom., asewdin .1MV daU
O bMnda ma ing, the ddaimed and cmplaidng si mvINVg fta colecUin of hdometlon. SeW omenW novnft I. bwdsn eM g m•d &MR
0e o Iah1, - -o-ecllon of Wormiton, nacluding suggeslin for raedwg thi. laruden to .NOnlhOn Hmedqltrs Senrvim, indai far INOW00140 Opefllfnm

and apW 121S Jeffeteom Davs N hIaw S=le 126,AXlhaon, VA 22202-4302. end to the. Cite of maregeement sand Budgid, P~epwaot Redujelo Po*0 (@Th441M)
V~fN DM C 2060&

1. AGENCY USE ONLY (Laeve bdank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 Research Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Organizing Plan Libraries in Subsumption Hierarchies: Specificity Based
Plan Selection NCC2-520

6. AUTOR(S) DABT63-91-C-0025
Vibhu 0. Mittal, Cecile Paris, Ramesh Pafil and Bill Swartout

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) S. PERFORMING ORGANIZATON
REPORT NUMBER

USC INFORMATION SCIENCES INSTITUTE

4676 ADMIRALTY WAY RR-305
MARINA DEL REY, CA 90292-6695

9. SPONSORINGIMONITORING AGENCY NAMES(S) AND ADORESS(ES) 10. SPONSORING/MONITORING

NASA AMES ARPA AGENCY REPORT NUMBER

• Moffett Field, CA 94035 3701 Faifax Drive
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

12A. OISTRIBUTIONWAVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (~admum 200 WOM')

As the number of plans in a plan library grows, the importance of selecting a plan efficiently also increases. Previous planners
0 have not addressed this issue in great detail, because they typically had only tens of plans - as domain models grow more and

more specialized, and planners incorporate new macro-operators through learning, plan libraries can become more than a magni-
tude greater in size. This paper addressed the issue of organizing plan libraries can become more than a magnitude greater in size.
This paper addressed the issue of organizing plan libraries in specificity based hierarchies. In particular, we look at how a plan
library can be represented in a frame-based KL-ONE style system. Such systems offer powerful mechanisms to handle dynami-
cally changing kmowledge bases. In particular, the subsumption classifier mechanism in such systems, offers a simple and effi-

S dcient means of indexing new plans and goals into the hierarchy. We illustrate the feasibility of this approach by using examples
from an implemented system, and describe some of the other advantages that accrue from the use of such a framework for orga-
nizing large plan libraries.

14. SUBJECT TERMS '1. NUMBER OF PAGES

14
plan libraries, classification, plan matching

16. PRICE CODE

17. SECURITY CLASSIFICTION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THiS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMIIEi

KSN 75404-21W-50 1anard Form 2a (Rv. 249)
Prescribed by ANSI Sid. Z39-111

* 29-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling In each block of the form follow. It is Important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.

Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any

Including day, month,a nd year, If available (e.g. 1 availability to the public. Enter additional

Jan 88). Must cite at least the year. limitations or special markings In all capitals (e.g.
NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.

State whether report is Interim, final, etc. If DOD - See DoDD S230.24, -Distribution
applicable, enter Inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title Is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHIB 22002.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in rmore than one volume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
In parentheses. DOE - Enter DOE distribution categories

Block 5. Funding Numbers. To Include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical

element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASA - Leave blank.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. include a brief (Maximum
PE Program WU - Work Unit 200 words) factual summary of the mostElement Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Address(es). Self..xplanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in

Block 9. SponsorinqIMonitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Block 10. Sponsoring/MonItoring Agency Information, stamp classification on the top and

Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not Included elsewhere such as: be completed to assign a limitation to the
Prepared In cooperation with...; Trans. of ...; To be abstract Enter either UL (unlimited) or SAR (same
published In... When a report Is revised, Include as report). An entry In this block is necessary If
a statement whether the new report supersedes the abstract Is to be limited. If blank, the abstract
or supplements the older report. Is assumed to be unlimited.

Standard Fot 296 Back fRev. 2-419

0

Organizing Plan Libraries in Subsumption Hierarchies:
Specificity Based Plan Selection

Vibhu Mittalt C(cile Parist Ramesh Patil William Swartoutt

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292 t'TI ',

U.S.A.

S{mittal,parisramesh,swartout} @ISJ.EDU j . C.
Phone: +1 (310) 822-1511 .

Fax: +1 (310) 823-6714 BY

A v•. i . .. :

DTIC QL-,:-P'y iU.:Z-i•.i-D 1 ! ,.t S,,. '

Abstract

As the number of plans in a plan library grows, the importance of selecting a plan efficiently
also increases. Previous planners have not addressed this issue in great detail, because they
typically had only tens of plans - as domain models grow more and more specialized, and
planners incorporate new macro-operators through learning, plan libraries can become more
than a magnitude greater in size. This paper addresses the issue of organizing plan libraries in
specificity based hierarchies. In particular, we look at how a plan library can be represented
in a frame-based KL-ONE style system. Such systems offer powerful mechanisms to handle
dynamically changing knowledge bases. In particular, the subsumption classifier mechanism
in such systems, offers a simple and efficient means of indexing new plans and goals into the
hierarchy. We illustrate the feasibility of this approach by using examples from an implemented
system, and describe some of the other advantages that accrue from the use of such a framework
for organizing large plan libraries.

The authors are listed in alphabetical order and gratefully acknowledge the sippor• f NASA-Ame! grant NCC
2-520 and DARPA contract L)Abb6i•-91-C-0025.

tAlso affiliated with the Department of Computer Science, University of Southern California. Los Angeles, CA
90089.

t

1 Introduction

Planning systems may vary widely in their control strategy or their application
domain, but they have all had aplan library, a resource which stores and organizes
the plans for use by the planner. As domain models grow more specialized, and
as planners incorporate new macro-operators through learning, plan libraries can
become very larger. In such situations, it becomes very important to organize
the plans in a structure designed for efficient indexing and access. This issue
was not raised by previous planners such as NOAH [7], TWEAK [1] and STRIPS [21,
because their plan libraries were relatively small, and consisted of operators that
were relatively independent of each other.

In addition to the question of efficient access, another criterion that the organi-
zation of the library must consider is the expression of relationships between the
different plans. This is essential, because, as we will show in the paper, the knowl-
edge about the inter-relationships between the plans is critical for plan selection,
when a number of plans are applicable, as well as for goal reformulation, when
there are.no plans that match the goal exactly. Schemes such as a hash-table look-up
mechanism, therefore, are not suitable, because, while they offer a fast access and
indexing of the plans, they do not offer any means of annotating inter-relationships
among them.

In this paper, we describe one approach to the organization and representation
of plan libraries: our system uses the mechanisms in a frame-based, inheritance
network knowledge representation (KR) system to both store and index plans in a
type specific hierarchy. The use of such a system to implement plan retrieval and
selection requires that the plan-capabilities, and the goals, be expressed in terms
in the KR language. We describe in the following sections, how specificity based
plan selection can be implemented within a KR framework, and the issues that arise
in mapping plans and goals to expressions that can be used by such a KR system
during classification. We illustrate our approach with examples and conclude with
a discussion on its strengths and weaknesses.

2 A Specificity Based Hierarchical Organization of the Plans

In our framework,' we view planning as a means of generating action sequences
for a wide range of problem solving tasks, including diagnosis, critiquing and

'The Explainable Expert Systems (EES) Framework 16, 8).

scheduling. Plans in our system resemble macro-operators in some planning
systems, such as STRIPS, NOAH and TWEAK - they are ordered sequences of actions,
which can be applied in certain contexts, if all the given pre-conditions are satisfied.
However, our approach is not limited to specific types of plans or planning systems.
We are addressing the issues that arise when there are a large number of plans,
many of them being variants for achieving similar goals in differing situations. For
instance, there can be a number of plans to diagnose a decserver: one to diagnose
any decserver, indicated by the following specification:

(DIAGNOSE (OBJECT (D is (A DECSERVER))))

another to diagnose decservers which are connected to source-computers, indicated
by:

(DIAGNOSE (OBJECT (D is
(A DECSERVER (CONNECTED-TO SOURCE-COMPUTER)))))

and yet another to diagnose a decserver connected to another source-computer
directly through a link (i.e., not through a lanbridge):

(DIAGNOSE (OBJECT (D is
(A DECSERVER (LINE-CONNECTED SOURCE-COMPUTER)))))

Given a goal to diagnose a decserver, it is important for the planner be able to
select the most appropriate plan in the situation. Large plan libraries containing
numerous plans like the ones mentioned above, have not been very common in
the past, but with more and more systems integrating learning with planning, the
situation is fast changing. The need for organizing plan libraries becomes evident
when viewed in this context.

There are two major requirements in the organization of plan libraries:

1. The ability to efficiently index plans, given a particular goal, and retrieve
the most specific plan for that goal, taking into account all the information
available, and

2. The ability to express plan inter-relationships.

The ability to Index plans efficiently further depends upon two factors:

1. What the system considers during the match: most planners, such as PRODIGY [?]
for instance, match plans based only on the EFFECT specification, i.e., the
action and its arguments. These arguments are typically either variables or

2

0

constants, and not domain dependent concept restrictions. This operation
results in a set of possible plans. This set of plans is then examined, serially,
to see if the constraints are satisfied. A plan is then selected from the set
remaining after inapplicable ones have been removed. This is typically done
on the basis of control knowledge, using selection strategies, such as "pick
the most specific," "pick the most general,", etc.

2. How the plans are organized in a plan library: previous planners have adopted
various approaches to organizing plans, based on their perspective of how 0
important efficient plan matching is to the system's performance. Thus, for
instance, since the major source of computational complexity in planning has
typically been in the sequencing, a large number of planners have encoded
their plan libraries in a flat, serial fashion, thus forcing the examination of
each and every plan for every given goal. Earlier versions of PRODIGY, for
instance, did this. Other approaches have also been used: a hash table,
mapping goals to applicable plans (recent versions of PRODIGY); the use of
discrimination nets, as in NOAH; etc.

Few planners have addressed these two issues of organizing libraries based
on both plan matching and representing inter-relationships. Yet, these issues are 0
important if a good organization for large plan libraries is to be devised. Each of
these issues interact and influence one another- for instance, since plan selection is
based on matching goals with EFFECTS and the CONSTRAINTS, the matching process
could be made more efficient by combining the two sources of information and
using it all to find applicable plans. However, there planners have not attempted
to integrate the two. The information being used in the match process affects the
organization of the plans in the library; however, the need to be able !o represent
plan relationships, also constrains the organization scheme, and therefore, the
type of indexing schemes possible. For instance, hash tables, while offering fast
access, would not be able to satisfy the requirement of representing plan inter-
relationships. Surprisingly, plan inter-relationships have rarely been considered
during plan organization, inspite of some significant benefits: consider for instance
the three plans mentioned above: it can be seen that the second plan and the
third plan are both specializations of the first one, because they are both plans that
diagnose decservers In specialized situations. The third plan is also a specialization
of the second one, if the knowledge base specifies that the relation LINE-CONNECTUD
is a specialization of the more general relation CONNECTED-TO. Should the last
plan mentioned above fail to achieve a goal, the next one to be attempted should
be the second one, rather than the first one. However, if the relationships between
plan 1, plan 2 and plan 3 are not represented, the planner would not be able to select
plan 2 over plan I (It would consider them both equally applicable). Thus, the 0
organization should reflect some of the control knowledge that is usually specified

3

in a non-transparent, procedural fashion in planners.

One possible method of organizing the plans is in the form of a hierarchy:
given a specificity ordering between plans, it is an easy matter to organize them in
a hierarchy. Well designed hierarchies offer a reasonably fast and efficient means
of indexing plans; should a goal fail to match any plans exactly, it is still possible
to find plans that are more specific and more general than the one required. These
plans can be then used to reformulate the goal in terms of the plans that the system
does possess.

However, hierarchies are not very easy to modify, especially if new terms
or relationships are defined in terms of one another, or if new plans are added
or deleted. Thus, the use of static discrimination networks, such as those used
in NOAH, to index the plan library, is not satisfactory, though it does offer some
advantages over the other approaches that have been used.

In the following section, we show how the use of a inheritance-based, frame
classification system such as LOOM [4,5] allows our system to build dynamic
hierarchies based on type specificity. Such a hierarchical organization provides fast
and efficient indexing into the plan library; the classification capability coupled
with the underlying knowledge representation, allows the dynamic modification of
the terms and their relationships in the knowledge base.

3 Organizing Plan Libraries as Concept Hierarchies

From the preceding discussion, it is clear that there is a need to organize large
plan libraries into specificity based hierarchies. As we mentioned earlier, plans in
our system resemble macro-operators in other systems. They have a number of
components, of which the relevant ones are:2

"* the :CAPABILrrY slot, which indicates the sort of goals the plan is capable of
achieving;

"* the :FECONDmONS slot, specifying the features that must be true in the state
of the world for that plan to be instantiated and executed (preconditions in
our system do not cause other goals to be posted).

"* and a :RESULTS slot, which specifies the type of the result of plan execution
- for instance, a plan to determine whether a component had power or not,
would have BooLEAN as its result specification; a plan to find all instances

21nere are other components, such as the :METHOD or the body of the plan, which we will not

elaborate upon in this paper.

4

0

(DEFINE-PLAN Diagnose-Component
:CAPABILITY (dianose (object (C is (a component))))
:RESULTS (a potential-problem)
:•TIMOD (

[... code for the plan ...]
)

)

Figure 1: A sample plan to diagnose a component. 0

of source-computers that were connected to a given decserver, would have
(SET-OF COMPUTIER) as its result specification.

An example of a plan in our domain of diagnosing decservers is shown in
Figure 1.

It has no preconditions and its result is a potential-problem. It should
be mentioned here that our plan language allows the expression of some types of
constraints as part of the "CAPABILITY specification, in addition to the ones in the 0
:PRECONDITIONS slot.

To be able to represent plans such as these in a frame based KR system, the
system must be able to map the :CAPABiLrTY, :PRECONDmONS and the :RESULTS
slots appropriately into expressions in the KR language. This mapping must be
designed in such a way that specializations of a plan result in corresponding KR
expressions that are specializations of the expression representing the more general
plan. In other words, the plan lattice should be mapped into an isomorphic concept
lattice. There are many possible transformations to ensure this mapping. We
shall now describe briefly the transformations for plan capabilities and goals in our
system.

3.1 Mapping Plan Capabilities to Concept Expressions

The mapping between plan capabilities and concept expressions can be easily
derived by representing the semantics of the plan's capability description. This is
especially true in our system, where the plan language allows the expression of
various constraints as part of the :cAPABLrry specification. Consider for instance,
the following plan :CAPABILInY specification: (DIAGNOSE (OBJECT (D is
(A DECSERVER)))) In this, the simplest case, the capability description specifies
that the plan is capable of diagnosing D, a decserver. The KR language used in

'In the more traditional operator representations, the capability could be represented
as:(:CAPABILITY (DIkGIOS2 ?D)) (:COISTUIITS (TYPE-P ?D DECM ER)).

5

our system is LOOM .4,51, one of the KL-ONE family of languages. One possible
definition for a corresponding LOOM concept of the above capability description
is:

(DEFCOICEPT DIAGIOSE-DECSERVER
:I$ (:AND DIAGNOSE (:THE OBJECT DECSERVER)))

The expression above defines a new concept DIAGNOSE-DECSERVER. Diagnose-
Decserver is an action of type DIAGNOSE. It therefore inherits all the roles and
restrictions defined on DIAGNOSE. It also has one relation restriction defined on it.
This restriction is defined on the relation OBJECT: there can be only one relation
named OBJECT on an instance (this is the keyword : the), and the range of this
relation (the domain is diagnose-decserver) is restricted to the type DECSERVER.

Consider now the following capability description:

(DIAGNOSE (OBJECT (D is (A DECSERVER (CONNECTED-TO SOURCE-COMPUTER)))))

In this case, the capability description specifies that the plan is capable of diagnos-
ing decservers which are connected to source-computers. This it a specialized
version of the plan discussed previously - the one to diagnose decservers in gen-
eral - and if the resulting LOOM concept is to form an isomorphic lattice structure,
it is essential that the LOOM transformation be such that the corresponding LOOM
concept for this plan is subsumed by the concept definition for the first cne. What
is needed in this case, is a concept, also of type DIAGNOSE (since this is also a
diagnosing action), but the OBJECT under diagnosis is another concept: a com-
plex concept, as yet unnamed, which represents a decnerver connected-to a
source-computer. This can be represented in LOOM as follows:

(DEFCONCEPT DIAGIOSE-DECSERVER-CONIECTED-TO-SOURCE-COMPUTER
:IS (:AND DIAGNOSE

(:THE OBJECT (:AID DECSEP.VER
(:SOME CONIECTED-TO SOURCE-COMPUTER)))))

The LOOM definition states that the concept is of type DIAGNOSE, whose only
OBJECT role has its range restricted to a concept: a decserver, one of whose
connected-to roles4, is filled by a source-computer. The concept defined
above is a specialization of the previous one, since the range restriction is a
specialization of decoerver.

These examples illustrate the basic principles behind the mappings from plan
capabilities to LOOM concept expressions.

"This is specified by the keyword :so0e

6

3.2 Mapping Goals to Concept Expressions

In order to do the match a goal to the plans, goals must also be transformed
into concept expressions that can be used in indexing the plan hierarchy. This
can be done in a fashion similar to that for plan capabilities. There is however,
an additional complication in transforming goals to LOOM expressions, because
goals have instances as well as concepts in them. For instance, if the system were to
be given a goal of the form (DIAGNOSE (OBJECT DECSERVER-123)), the desired
behavior of the system would be to find and return the most specific plan applicable
for the instance DECSERVER- 123. The most specific plan can be found efficiently
if the plans are organized in a type specific hierarchy, by converting the goal into
a LOOM form and using that to index into the plan hierarchy.

KL-ONE style classifiers require concept expressions for classification - they
cannot classify instances - and therefore it becomes essential that the mixed- •
mode expression that the goal would normally be converted to (following the
transformation sequence described for plan capabilities) be coerced into a form
suitable for use by the classifier. There are two ways of coercing the mixed-mode
concept into a form that can be used by LOOM: one, is to go 'down', and convert
the concept expression to a 'pure' instance, or to go 'up' and transform it into
a pure concept expression. A discussion on the differences between these two
approaches is beyond the scope of this paper. In this section, we describe how
goals can be mapped into 'pure' concept expressions, which can be used to index
the plan hierarchy for applicable plans.

It is important to keep in mind that during this transformation of a goal to 0
a LOOM expression, and then to a LOOM concept expression, no usable infor-
mation is dropped in the mapping process. This concept of usable information
can be better explained with an example: Consider, for instance, the goal of di-
agnosing the instance DECSERVER-123 that were posted above. If all that were
known about DECSERVER-123 was of type decserver, the system should have
retrieved the DIAGNOSE-DECSERVER plan; on the other hand, if it was known that
DECSERVER-123 was related to an instance of source-computer through the
relation CONNECTED-io, then the plan DIAGNOSE-DECSERVER-CONNECTED-TO--
SOURCE-COMPUTER should have been the most specific one returned. Note that
the retrieval of the second plan is still based on the same syntactic goal being
posted; the extra knowledge about the connection of DECSERVER-B is available
and retrieved from the knowledge base, but is not explicitly stated in the goal. Plan
selection strategies based on static discrimination nets, that did not take Into ac-
count (for instance) all sub-types of the relation CONNECTED-ID, would not be able
to correctly index plans that involved those specializations. This can easily occur,
if for Instance, the knowledge base is modified even slightly after the discrimina- 0
tion network is constructed. In a system such as ours, new concept descriptions

7

are created by various resources; in any learning system, the possibility of new
terms being defined due to learning cannot be ruled out. It is thus important for any
system that the 'discrimination network' be able to take into account the dynamic
nature of the knowledge base and the underlying concept hierarchy, in terms of
which the plans are likely to be indexed.

This brings us back to the original issue, that of coercing the mixed-mode
expressions into forms that the classifier is capable of handling. One possible
solution is to transform the goals not into concepts with instances as role fillers, but
rather to find the most specific concept type (MST) of each instance in the goal, and
use these types to construct the corresponding LOOM expression. This approach
has one very important implication - classifiers in KL-ONE style languages do not
classify instances because the definitional component of information cannot be
circumscribed - by finding the MST of an instance, the reasoning is now being
restricted to only consider named expressions - concepts that exist (either because
they were user-defined, or defined by the system as a result of a conjunctive
expression appearing in a plan capability), in the classifier hierarchy. Without this
restriction, it would not have been possible for the classifier to work; in essence,
the system requests the classifier to reason using only concepts it already knows
about.

Consider for instance, the example given below:

(tell (adder instance-i))
(retrieve ?z (instance--type instance-i ?x)) ==> (ICIADDER)

In the first case, retrieving the instance--type of instance-I returns the con-
cept ADDER.

(tell (multiplier instance-2))
(tell (connected-to instance-1 instance-2))

A relationship between instance- I and instance-2 through the relation connected-to
is asserted. The MST that the system would return in response to the query that
previously returned (I C I ADDER), depends upon any other concept compositions
that the system knows about. If there were no concepts that had an adder connected
to a multiplier in the domain model, the system would return an (I C I ADDER). as
in the case above. Hq)wever, If there were to be a concept in the system that related
an adder and a multiplier via a connected-to relation, the query would return
that concept, even if It were an internally-defined concept. In our case, the system
returned the concept Concept.-243, where Concept_243 was defined to be:

(DEFCONCEPT CONCEPT.243
:IS (ADDER (:SOME CONNECTED-TO MULTIPLIER))
:ATTRIBUTES (:SYSTEN-DEFINED))

8

CONCEPT-243 was defined by the system automatically, when the following plan
capability was defined in LOOM:

(<ACTION> ... (<role-name> (A in (A (ADDER (CONNECTED-TO NMULTIPLIER))))))

This is because, the way this is transformed into LOOM resulted in the following
expression:

(DEFCOECEPT ADCG-592
:IS (:AND <ACTION> (:THE <ROLE-NAME>

(:and ADDER (:SOME CONNECTED-TO NULTIPLIER)))))

When LOOM is given this definition, it is forced to create an internally named
concept (in our case, concept_243). Thus, the underlying concept hierarchy in
terms of which the plans can be indexed, contains not only the terms that the user
defines, but also system-defined terms such as the one above, which arise due to the
complex plan definitions. This enables the system to retrieve the correct plan from
the plan hierarchy by taking into consideration all incidental information about
the instance that it can take advantage of. Thus, the plans known to the system
automatically determine the information about the goal instance that will be used
in indexing the plans, in addition to the user defined type, which is what a plan
selection mechanism based on static discrimination networks would be limited to.

A brief description of our plan matching algorithm is shown in Figure 2.

4 Advantages of this Approach

There are many advantages of using an approach which combines the power and
flexibility of frame-based classifier system with a planning system to organize
and index plan libraries in an efficient manner. As systems grow and add more
specialized plans and refine their domain model, the problem of indexing plan
libraries is likely to become larger. Previous approaches to this problem have
not considered the use of such a powerful mechanism, because they were either
implemented as isolated stand-alone planning systems, or the number of plan
operators was small enough for this issue to not be raised. There are a number of
advantages in the use of such a framework. Some of these are:

1. An efficient organization of plans in a hierarchy, leading to fast efficient 0
access. The hierarchy closely integrated with the domain model, and is
maintained by the classifier dynamically. Changes in the domain model
cause both the domain relationships as well as the plan hierarchy to be
updated accordingly. In contrast, static discrimination networks, based on
one version of the domain model, can be crippled by the use of a slightly
different domain model that invalidate some of the previous relationships.

9

S..

For ta* plan:

1. Pas each plan and colect and combine al Its :procondxtioano with its :c pab11hty specfi -
cabon.

2. Map ids new -.capabil ity specificalon to a corresponding LOOM expression (these translaon
routines will depend upon the grammar of 1he plan language and the KR language).

3. Generate a LOOM concept whose defini1ton consists of the above expression and Is subsumed
by a concept that stands or plane.

4. Classify to new plan concept in Vie plan hierarchy.

For each goal:

1. Parse the posted goal and find all te instances In the goaJ.

2. For each instance in the goal posted, find to most specific concept type that subsumes it.

3. Replace e actual instances in the posted goal with their types.

4. Transform this modified goal (containing only concepts) to a LOOM expression in a fashion
similar to he one for plan capabilites.

S. Using this LOOM expression, find where it Its into the T-Box hierarchy of mhe domain knowl-
edge. Retrieve exact matches, immediate ancestors and descendants and return those that
correspond to plan-cepabilities.

Figure 2: The Plan Selection Algorithm

Changes in the plan capability statements, as well as the constraints, are
also taken into account by the classifier and do not result in a need to make
appropriate changes in different parts of the system.

2. The system can take advantage of incidental information about goal in-
stances: if an instance happens to have properties for which a plan exists,
then the plan will be returned by the plan selection mechanism (This is due
to the fact that the classifier checks for every property on the instance in
terms of named-concept-expressions, as was discussed earlier).

3. Some types of goal reformulations are greatly facilitated by such a frame-
work. The hierarchical organization of plan libraries, combined with its
close coupling with the underlying domain model, facilitates at least two
types of goal reformulations:

(a) Consider for instance, a goal such as (DIAGNOSE DECSERVER-313),

where DECSERVER-313 happens to be an instance of decserver. If

10

there were no plans in the system to diagnose decservers, most planners
would return failure (A few recent systems, such as SOAR [31 would
attempt to use weak methods to solve the goal, but that might not be
the best approach - since their approach would be to try and attempt
the diagnosis from first principles). For instance, in the case of DEC-
SERVER, the KB might specify the fact that it has two disjoint sub-types:
DECSERVER-200 and DECSERVER-500. The system can then check to
see whether it possesses plans that can diagnose these two types of
decservers. If it can, then an attempt can be made to diagnose the
given instance, by executing both the plans and trying to combine their
results. This type of goal reformulation, based on knowledge about a
concept, available in the domain model, and a hierarchical classifica-
tion of plans based on type, is greatly facilitated by a framework that
combines the two.

(b) Another possibility of goal failure arises when the system is unable to
find an appropriate plan, inspite of its existence, because of a differ-
ence in the terms used in the goal and the plan. For instance, the goal
could be of the form: (DIAGNOSE SOURCE-COMPUTER-411), where
the goal instance is of type SOURCE-COMPU'ER. There may be no plans
in the knowledge base to diagnose SOURCE-COMPUTERS; this may be
perhaps due to the fact that any computer, capable of supplying par-
ticular software versions to a decserver can be its SOURCE-COMPUTER.
Thus the plan to diagnose computers can actually be applied to a
source-computer, by taking into account its connectivity and its soft-
ware versions. Since information such as this can be expressed in the
form of :IMPLES relations in these systems, the classifier will automat-
ically be able to retrieve DIAGNOSE-COMPUTER as a potential candidate
for this instance.

5 Conclusions

Many systems use a planner as one of their problem solving components. Most
of these planners, however, are not well integrated with the rest of the system.
Plans are matched with goals by using the plan :CAPABILrnEs (without taking
Irto account the constraints as well), using different mechanisms such as table
look-up, discrimination networks, etc. Planners have traditionally had their own
mechanisms for plan storage and retrieval, independent of the rest of the system
components. Plans have typically had limited access to the knowledge base,
through accessor functions as part of their constraints. In this paper, we have
described one approach towards integrating the storage and selection mechanisms

I1

of a planner with the underlying knowledge framework, and using a subsumption
classifier to retrieve plans by transforming goals appropriately.

An advantage of this approach lies in its ability to facilitate goal reformulations.
Failure to find an exact match for a goal should result in the system replanning the
goal based on other plans in its knowledge base rather than goal failure. One way
to reformulate a goal efficiently is by restructuring the goal in terms of plans that
the system does possess, using information in the knowledge base to help achieve
its task. A plan hierarchy such as ours is very useful in this regard, because it takes
into consideration features such as disjoint coverings and inheritance relationships
while classifying the plans. Finding plans that are 'close' to the desired match is a
simple matter in this case.

Our approach is not without its some disadvantages however, chief among
which is the requirement of a KR system that does classification. Since the
classifier uses its knowledge about the relationships between terms in the domain
model for classification, it is necessary that plan selection criteria be expressible
in the KR language. In our system, since type specificity was the desired criterion,
there was no need for additional specification. In cases of plan recognition for
instance, a mapping between the body of the plan (or rather the the structure that
is being used for recognition, such as for instance, the kernel, or the justification
structure), and an appropriate KR expression must be derived. This is not difficult,
however, and can lead to a better representation of the plan structure - one that
is closely integrated with the representation of the domain model - in a single,
uniform fashion.

12

References

[1] David Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 32:333-377,
1987.

[2] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. In James Allen, James Hendler, and Austin
Tale, editors, Readings in Planning, pages 88 -98. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA., 1990.

[31 John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An architecture for
general Intelligence. Artificial Intelligence, 33:1-64, 1987.

[4] Robert MacGregor. A Deductive Pattern Matcher. In Proceedings of the 1988 Con-
ference on Artificial Intelligence, St Paul, Mn, August 1988. American Association of
Artificial Intelligence.

[5] Robert MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In John Sowa, editor, Principles of Semantic Networks: Explo-
rations in the Representation of Knowledge. Morgan Kaufmann, San Mateo, California,
1991.

[6] Robert Neches, William Roy Swartout, and Johanna Doris Moore. Enhanced mainte-
nance and explanation of expert systems through explicit models of their development.
IEEE Transactions on Software Engineering, SE-I 1(1 1): 1337-1351, November 1985.

[7] Earl D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier-North Holland, 1977.

[8] William R. Swartout and Stephen W. Smoliar. On making expert systems more like
experts. Expert Systems, 4(3): 196- 207, August 1987.

0

13

0

